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Abstract
Dissolved oxygen (DO) concentrations in streams are driven by multiple, interacting biotic and abiotic processes. While DO 
variability largely reflect cyclic patterns of respiration and photosynthesis coupled to diel cycles, physical processes such as 
floods that disturb biofilms and variation in temperature disrupt such cycles. In urban settings, DO cycles are typically greatly 
altered by elevating nutrient concentrations and reducing light-shielding riparian vegetation. We analyzed diel variations in 
DO from sensors distributed throughout six headwater streams to quantify (1) diel DO range patterns among watersheds of 
varying size and urbanization intensity, (2) the conditions that lead to abrupt declines in diel DO ranges, and (3) the amount 
of time needed for diel DO ranges to recover post-disturbance. In very small streams, disruptions to diel DO ranges appear 
to occur following severe fluctuations in atmospheric temperatures while precipitation events were primarily related to diel 
DO disruptions in larger streams. Precipitation events ≥ 1.5 cm over a 1-day period or ≥ 2.5 over a 2-day period consistently 
resulted in abrupt depressions of diel DO variations. While we primarily analyzed abiotic variables, we acknowledge that 
photosynthetic activity producing DO was also an important variable as shown by an analysis of how cloud cover influenced 
DO variations. Recovery of diel DO ranges to pre-disturbance conditions varied among sites, with the smallest watershed 
site reaching 50% pre-disturbance ranges in an average of 4.5 days and the largest and most urban sites reaching the same 
threshold over an average of 2.1 days. Urban sites typically exhibited greater diel DO ranges but did not exhibit lower pre-
cipitation thresholds for resetting diel DO ranges. DO ranges were more likely to be disrupted by precipitation events when 
water temperatures were cooler, which suggested different impacts of hydrologic controls on DO variations across seasons. 
Our findings suggest that streams consistently possess discharge thresholds that, if exceeded, lead to abrupt declines in the 
magnitude of the diel change in DO, but urban streams may show greater variation in diel DO concentrations with implica-
tions for fish habitat, redox-sensitive microbial processes, and contaminant transport and transformation.

Keywords  Dissolved oxygen · Diel variability · Urban streams

Introduction

Dissolved oxygen (DO) concentrations represent an ecologi-
cally crucial and highly dynamic environmental parameter 
in flowing waters (Bernhardt et al. 2018). Most aquatic 
macro-organisms require DO to fulfill cellular metabolism 
and consequently diminish DO while photosynthetic organ-
isms generate DO during periods of daylight, resulting in 
ecosystem-wide diel cycling of concentrations (Odum 1956, 
Mullholland et al. 2005, Wilding et al. 2012). Although 
the relative balance of both processes varies significantly 
among settings, streams are more likely to be net hetero-
trophic compared to other aquatic ecosystems (Hoellein 
et al. 2013), possibly due to high rates of respiration during 
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daylight hours (Hotchkiss and Hall 2014). However, DO in 
streams can also vary directly or indirectly with other highly 
dynamic variables, such as daily and seasonal temperature 
changes that alter DO solubility (Williams and Boorman 
2012; Rajwa-Kuligiewicz et al. 2015), flood events that 
scour benthic periphyton and therefore reduce both pho-
tosynthesis and respiration (O’Connor et al. 2012), and 
eutrophication that elevates DO production via enhancing 
photosynthesis (e.g., Dodds 2007; Kaushal et al. 2014a, b; 
Smith and Kaushal 2015; Reisinger et al. 2017). Physical 
reaeration of DO at the surface also varies as a function 
of temporally dynamic variables such as water DO deficit, 
turbulence, velocity, and depth (Gromiec 1989; Moog and 
Jirka 1999; Izagirre et al. 2007). Because diel variations in 
DO concentrations are simultaneously impacted by a highly 
heterogeneous suite of physical, chemical, and biological 
variables, identifying dominant drivers of diel DO ranges 
within a system is difficult.

Hydrologic variability can play an important role dur-
ing precipitation events, and the role of precipitation events 
in impacting diel variations/oscillations may differ season-
ally by temperature. Many organisms exhibit sensitivity to 
low DO episodes (Davis 1975), the frequency of which are 
expected to increase with warming temperatures (Ficklin 
et al. 2013). Previous work has shown that there have been 
long-term rising stream and river temperatures in regions 
of the United States (Kaushal et al. 2010) and understand-
ing how temperature and hydrologic variability influence 
diel DO oscillations is critical for managing urban water 
quality (Blaszczak et al. 2018). Additionally, changes in 
DO concentrations can significantly affect important bio-
geochemical processes such as nitrification, denitrification, 
and phosphorus release from sediments (Kemp and Dodds 
2002, Veraart and Scheffer 2011, Rosamond et al. 2012, 
Duan et al. 2016). The role of DO variations can also be 
important in evaluating the effects of ecosystem degradation 
and restoration on the nitrogen uptake functions of urban 
streams (Pennino et al. 2014; Reisinger et al. 2019).

Anthropogenic environmental stressors that affect fun-
damental physicochemical properties of streams may also 
alter how DO concentrations temporally vary, particularly 
in urban settings. Whole-ecosystem metabolism in streams, 
defined as the balance of respiration and photosynthesis, 
represents a dominant driver of DO concentrations that can 
be radically altered by anthropogenic activity. Excess nutri-
ent inputs from urban infrastructure can promote primary 
productivity in biofilms during diel daylight periods and 
cause heightened diel DO concentrations, especially when 
temperatures are high (Halliday et al. 2015; Hasenmueller 
et al. 2017). Reduced canopy cover, characteristic of many 
streams altered by land use change, can also significantly 
enhance DO production by photosynthesis (Hoellein et al. 
2013). However, in some settings urbanization may suppress 

diel DO fluctuations due to elevated scouring event frequen-
cies that remove biofilm and consequently diminish both 
respiration and photosynthesis rates (Blaszczak et al. 2019; 
Wang et al. 2003). Urban streams with low slope gradients 
may be acutely vulnerable to episodic low DO conditions 
due to the limited potential for physical reaeration (Wild-
ing et al. 2012; Blaszczak et al. 2019). Changes to riparian 
canopy cover and associated effects on stream temperatures 
can also significantly alter DO concentrations by shading 
periphyton and moderating photosynthesis, with conse-
quences on nitrification and denitrification (Sudduth et al. 
2011; Hornbach et al. 2015).

Data from long-term or high frequency monitoring using 
autonomous sensors can help identify the most important 
agents regulating DO concentrations. Recent advances in 
autonomous sensor technology have lowered the cost and 
increased the ease of conducting such monitoring, which 
has enabled investigations of DO dynamics in streams that 
were previously not possible (Rode et al. 2016). For exam-
ple, high-frequency records derived from automated sensors 
have helped to highlight complications in methods to assess 
DO in streams for water quality directive compliance (Skeff-
ington et al. 2015) and assess the efficacy of water purchases 
for sustaining conditions suitable for aquatic life in streams 
subject to withdrawals (Null et al. 2017). Although advances 
in sensor technology have furthered our understanding of 
many chemical parameters in streams, the highly temporally 
dynamic nature of DO renders automated sensors particu-
larly useful for such inquiries (Loperfido et al. 2009).

We employed automated DO sensors in six temperate, 
headwater streams varying in watershed size and urban land 
cover to investigate hydrologic and thermal factors influenc-
ing variability in diel DO ranges. Our intent was to quantify 
the frequency and intensity of low DO concentration events 
in urbanizing streams, thus we opted to broaden the spatial 
scale and number of sites for our study at the expense of 
more intensive monitoring at a single site that may compre-
hensively quantify ecosystem-scale metabolic rates. Early in 
our monitoring effort, we noted instances of abrupt declines 
in diel DO ranges following long periods of relatively large 
fluctuations between day and night, resulting in declines in 
diel range magnitude of up to 4 mg L−1. We focused on pre-
dicting instances of such phenomena using precipitation and 
temperature data with implications for water quality, nutrient 
flux, and aquatic habitat and ecosystem integrity. Potential 
relationships between DO diel ranges and metrics associated 
with precipitation and temperature were explored at multi-
ple temporal scales and hypothesized that the amplitude of 
diel variations of DO would increase with watershed size. 
Additionally, we hypothesized that DO diel ranges in small 
streams would be more regulated by temperature than larger 
and more urban streams, where DO would be more strongly 
influenced by hydrologic disturbances.
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Methods

Study sites

Our study was conducted in six perennial headwater 
streams with watersheds within and north of the city of 
Pittsburgh, Pennsylvania, USA (Fig. 1). All sites were 
located within the suburban fringe of Pittsburgh, although 
each site retains some secondary growth deciduous forest 
cover in the watersheds (Table 1). Sites consisted of small 
first-order to third order headwater streams with perennial 

flow. Each watershed constitutes part of the upper Ohio 
River and Mississippi River drainages. The climate in the 
study region is temperate humid with a mean annual tem-
perature of 11.1 °C and 88.5 cm of precipitation (Arguez 
et al. 2010).

Sites spanned gradients of watershed urbanization, rang-
ing from 0 to 85% urban (0–42.7% impervious surface 
cover) based on land use classification defined by the 2011 
National Land Cover Database (Homer et al. 2015), which 
reports land cover on a 30 m pixel resolution. Multiple 
efforts to restore ecological functions to the most urbanized 
site, Nine Mile Run, have been implemented in attempt to 

Fig. 1   Map of the study sites 
depicting watershed boundaries 
and channels with perennial 
flow. Channels do not include 
stream reaches buried by urban 
development, as is evident in 
the Nine Mile Run site, where 
the stream channel is daylighted 
only in the lowermost reach. 
Inset shows location of study 
region relative to eastern North 
America
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reverse damage caused by near-complete channel burial (see 
Fig. 1) and outfalls of combined sewerage overflows (CSOs; 
Bain et al. 2014). Urban land cover at other sites consists 
primarily of roadways, parking lots, and rooftops without 
direct CSO outfalls, although septic tanks and leaking sewer-
age lines likely contribute nutrients and other contaminants 
to the streams. Most land cover in all study site watersheds 
not classified as urban was deciduous broadleaf or mixed 
coniferous/deciduous forest.

Sensor deployment and maintenance

We deployed miniDOT sensors (Precision Measurement 
Engineering, Inc., Vista, California, United States of Amer-
ica) at each site to monitor DO concentrations and water 
temperature. The sensor uses an optode to measure DO con-
centrations via fluorescence. Each unit was fit with copper 
anti-fouling plates and deployed in polyvinyl chloride pipes 
with perforations to allow flow across the sensing location. 
Deployment sites were selected in slow-moving habitat, 
either runs or pools, and the sensing elements were posi-
tioned about 10 cm deep during baseflow. Sensors were set 
to record DO and temperature every 15 min. Following the 
initial deployment, sensors were visited with variable fre-
quency but no more than a period of 28 days to retrieve data 
and check on the status of the device. Sensors were occa-
sionally buried by sediment or exposed to the atmosphere 
during visits, in which case the sensor housing was relocated 
to an area ≤ 5 m from the original position.

Data retrieved from the DO sensors were quality-con-
trolled prior to all analyses. Periods where exposure to the 
atmosphere or burial by sediment were clearly distinguisha-
ble by abnormally high or low and consistent values, respec-
tively. All such data points were removed from the record 
before subsequent inquiries. Active sensor deployment 
periods ranged from 393 (Nine Mile Run) to 620 (Glade 
Run) days between 2016 and 2018. Although the deploy-
ment period varied among sites, each site deployment period 
overlapped with cold and warm seasons during deployment. 
The manufacturer recommends recalibration after 500,000 

readings, which was not exceeded during the study period 
for any site. However, the calibration status for all sensors 
was verified approximately midway through the study period 
by placing the sensors in water that was artificially satu-
rated with oxygen via forced aeration. We retrieved a total of 
278,476 DO readings from sensors among all sites over the 
study period. Temporal coverage was poorest in Nine Mile 
Run (393 days out data successfully retrieved out of 826 
possible days) due to the tendency of high flows and associ-
ated sediment pulses that disrupted sensor performance at 
that site.

DO saturation (%) was also quantified for each quality-
controlled reading. We applied the DO.saturation function 
from package rMR (Moulton 2018) using DO concentration, 
water temperature, and atmospheric pressure as arguments. 
Atmospheric pressure data applied in these estimates were 
from the National Oceanic Atmospheric Administration 
(NOAA) weather station at the Pittsburgh International Air-
port (NOAA 2020b), which collected observations hourly.

Additional variables exploring DO variation

Our goal was to determine how parameters associated with 
watershed size, weather, and seasonality affect diel patterns 
of DO in streams of the site network. Daily DO minima and 
maxima were calculated for each date with > 90 successfully 
recorded DO readings within a 24-h period to estimate diel 
ranges. We also determined if minima and maxima occurred 
during daylight or nighttime for each date and site by record-
ing when each metric was observed using sunrise/sunset 
phenological data for Pittsburgh provided by the United 
States Naval Observatory (USNO 2020).

Preliminary analyses of our records revealed many 
instances when DO diel ranges abruptly declined relative 
to prior dates and remained low for multiple days (Fig. 2a). 
Such phenomena, hereafter referred to as diel range reset 
events (DRREs), were detected in each site, often occurred 
on the same date in multiple sites, and were found to be not 
associated with sensor maintenance visits. Because DRREs 
represented dramatic changes (up to 4 mg L−1 between 

Table 1   Study site watershed attributes

*Estimate based on buried stream reaches (Bain et al. 2014)

Site Watershed 
size (km2)

Strahler order Slope 
(m m−1 × 10–2)

% Urbanization % Pasture and 
row crop

% Forest % Impervious 
surface cover

Breakneck Creek 0.1 1 4.1 48.6 19.5 31.9 12.1
Glade Run 0.7 1 2.1 2.4 49.2 48.3 0.0
Irwin Run 1.5 1 1.5 43.7 1.1 55.2 6.4
Crouse Run 9.7 2 2.0 71.3 0.6 28.0 21.5
Montour Run 12.5 3 0.6 29.2 6.2 64.2 4.5
Nine Mile Run 13.8 3* 0.1 84.7 0.1 15.2 42.7
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subsequent days) in diel ranges with potential implications 
for stream biota and biogeochemical processes, we aimed 
to identify any meteorological or seasonal conditions that 
lead to an elevated probability of DRRE occurrence. At each 
site we identified dates when DRREs occurred by flagging 
when the difference in diel DO ranges between subsequent 
dates was more than 1.5 standard deviations below the mean 
(Fig. 2b). We chose this threshold because dates below this 
metric consistently represented a left skew with respect 
to the otherwise normal distribution of diel DO ranges 
(Fig. 2b).

We used several metrics that quantified meteorological 
conditions and ambient DO concentrations at multiple tem-
poral scales in attempt to identify phenomena associated 
with DRRE occurrence. For each date on record, the mean 
water temperature and mean DO, for the preceding 2-, 5-, 
and 10-day periods along with total precipitation for each 
date plus the three preceding intervals were calculated. We 
quantified precipitation metrics for use as a proxy of hydro-
logic dynamics, as our sites were not monitored for dis-
charge. Precipitation data were summarized daily from the 
Three Rivers Wet Weather rain gage network, which consists 

of heated precipitation gages that record precipitation on 
5-min intervals throughout the metropolitan region (TRWW 
2019). For each site, data from the closest rain gage in the 
network (≤ 5 km) was retrieved to account for differences in 
precipitation among watersheds. We estimated the diel and 
2-day ranges of atmospheric temperature for each date using 
data from the Acmetonia Lock three weather station oper-
ated by NOAA (NOAA 2020a), located no more than 10 km 
from any site. Finally, each date on record was categorized 
as winter, spring, summer, or autumn based on astronomical 
calendar dates associated with solstices and equinoxes for 
the northern hemisphere. Any 2-, 5-, or 10-day metric asso-
ciated with missing data in the corresponding site-specific 
DO record was removed prior to further analyses.

To assess how DO ranges in study sites were affected 
by possible light limitation of photosynthetic activity, we 
calculated mean daily cloud cover using hourly recorded 
data reported in oktas from the NOAA weather station 
at the Pittsburgh International Airport (NOAA 2020b). 
Mean cloud cover was assessed during daylight hours only 
using the sunrise/sunset phenological data from the USNO 
described above.

Our network of sensors lacked equipment to record dis-
charge data and used precipitation as a proxy for hydrologic 
change. We therefore linked hydrologic responses to pre-
cipitation events for streams in our study region by assess-
ing data from United States Geologic Survey (USGS) dis-
charge monitoring site on Little Pine Creek (USGS gage 
03,049,800). Little Pine Creek is a 14.9 km2 watershed with 
moderate urban cover (4.8% impervious surface cover) 
within our stream network (Fig. 1) that has been analyti-
cally compared as a semi-rural control site to Nine Mile 
Run previously (Bain et al. 2014). Distinct flood events 
were identified from hydrologic records reported at 15-min 
intervals from calendar years 2016 through 2018 by flagging 
continuous periods where discharge exceeded three times the 
monthly median flow (Olden and Poff 2003). Precipitation 
data from the TRWW gage at Shaler (TRWW 2019) were 
linked to Little Pine Creek discharge data to assess flood 
responses to precipitation as outlined below.

Statistical analyses

To identify which metrics were most associated with 
DRREs, we generated boosted regression tree models that 
predicted DRRE occurrence with meteorological, tem-
perature, and ambient DO metrics. Boosted regression tree 
(BRT) models are agglomerations of simple regression trees 
that are iteratively tested using a machine learning approach 
to produce an additive model that can detect nonlinearities 
among variables (Elith et al. 2008, Elith and Leathwick 
2017). Each site-specific model was fit using a Bernoulli 
distribution for the dependent variable (DRRE occurrence), 

Fig. 2   a An example of a dissolved oxygen (DO) diel range reset 
event (DRRE) occurring in three study sites on 12 August 2017. b 
Distribution of differences in diel DO ranges in subsequent days for 
Crouse Run. The dashed line shows 1.5 standard deviations away 
from the mean; differences below this value were considered DRREs
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an interaction depth of one, bag fraction of 0.5, learning rate 
of 0.001, and 1000 trees. Models were assessed using the 
fraction of relative influence in the model for each variable, 
with those ≥ 20.0% considered meaningfully important. The 
same methodology to model DRRE event probability was 
applied to DO saturation to determine if patterns using this 
parameter rather than DO concentrations deviated from one 
another.

We also quantified how quickly DO diel ranges 
approached pre-DRRE conditions following the event 
to compare the speed of recovery among sites. To do so, 
the number of days required to return to 50% of the pre-
DRRE diel range was calculated for each DRRE event at 
each site. We opted for the 50% metric rather than quantify 
the time required until full recovery because this threshold 
was met more quickly and precipitation events following 
the DRRE would have distorted the recovery time estimate. 
Furthermore, post-DRRE periods where precipitation totals 
exceeded 5 cm were removed from analyses. Recovery rates 
in units of days until 50% pre-DRRE recovery were com-
pared among sites using a generalized linear model (GLM) 
with a Poisson error distribution. Mean water temperature 
during the recovery period was also included as a covari-
ate in the GLM model to determine if recovery rates varied 
among seasons.

Cloud cover was assessed as a proxy for photosynthetic 
activity using linear models predicting DO diel range from 
mean diel cloud cover during daylight hours at each site. 
Because primary productivity has been shown to be limited 
by low temperatures in streams similar to those in our study 
area (Francoeur et al. 1999), only dates where mean water 
temperatures recorded in DO sensors exceeded 10 °C were 
included in these analyses. Although primary production 
can occur in temperatures below this threshold, we elected 
for a conservative metric to ensure that we limit analyses to 
periods where photosynthetic activity was very unlikely to 
be limited by cold conditions.

To link flood responses in Little Pine Creek to precipita-
tion metrics we employed to assess DRREs, we calculated 
the maximum observed discharge for 208 flood events that 
occurred between 2016 and 2018 and linked this metric to 
1- and 2-day precipitation totals associated with each flood 
event. Thresholds of precipitation events that triggered sig-
nificant flood responses were identified using changepoint 
regression (Fong et al. 2017b) on ln-transformed flood mag-
nitude and precipitation data. Estimated thresholds were 
back-transformed to identify 1- and 2-day precipitation totals 
that were likely to initiate moderate to severe flood events.

All statistical models were developed using R version 
3.5.2 (R Development Core Team 2018). Package gbm 
(Greenwell et al. 2019) was used to develop BRT models and 
package chngpt (Fong et al. 2017a) was used to calculated 
precipitation thresholds that triggered hydrologic responses.

Results

DO ranges exhibited clearly disparate patterns among sites 
(Fig. 3). Although daily means varied mostly between 
14 mg L−1 during winter and 8 mg L−1 during summer 
in all sites, diel variability for both DO concentration and 
saturation was lowest in the site with the smallest water-
shed (Breakneck Creek) and greatest in the largest and 
most urbanized watershed (Nine Mile Run; Figs. 3, 4). 
Diel DO ranges in Nine Mile Run were higher on average 
and more variable than all other sites (Fig. 4), with some 
days ranging < 2 mg L−1 and others exceeding 10 mg L−1. 
DO saturation shifted along the size gradient, with sat-
uration rarely exceeding 100% in the two smallest sites 
(Breakneck Creek and Glade Run) while supersaturation 
was commonly observed throughout most seasons in all 
other sites (Fig. 3).

Patterns in diel DO minima and maxima timing also 
appeared to vary among sites based on a watershed size 
gradient (Fig. 5). Although DO minima were most likely 
observed during dark hours and maxima during daylight 
hours in all sites, DO maxima were observed during dark 
hours in the smallest sites (Glade Run and Breakneck 
Creek) during over a quarter of the daily records, suggest-
ing that temperature fluctuations were sometimes more 
capable of controlling diel patterns than biological activ-
ity. In larger sites, the diel DO minima and maxima pat-
terns suggested biological controls on DO, with nearly 
all maxima observed during daylight hours and minima 
during dark hours. However, diel minima were observed in 
the largest and most urban stream (Nine Mile Run) during 
daylight hours during nearly a quarter of the record.

BRT models proved capable of predicting DRRE occur-
rence. Explained deviance among models ranged from a 
low of 0.23 (Glade Run) to a high of 0.38 (Nine Mile 
Run); cross-validation correlation coefficients ranged from 
0.47 to 0.63 (Table 2). The most influential controls on 
DRRE occurrence as identified by the BRTs varied among 
the six sites. The most consistent and strongest predictors 
of DRRE occurrence were metrics associated with pre-
cipitation (Table 2, Fig. 6), which accounted for nearly 
all relative influence in the Montour Run BRT model and 
dominated relative influence in most other site models. 
Partial dependency plots (Fig. 7), which illustrate the 
standardized marginal effect of individual parameters 
on the response variable (in this case, the likelihood of a 
DRRE event occurring), revealed that DRRE events were 
most likely to occur at colder water temperatures, higher 
levels of precipitation, and dates with greater ranges of 
air temperatures. Trends shown in Fig. 8 also illustrate 
the nature of relationship (i.e., linear or other) between the 
predictor variables and response and nonlinear threshold 

Author's personal copy



Influence of temperature, precipitation, and cloud cover on diel dissolved oxygen ranges among…

1 3

Page 7 of 16     82 

effects appear to be associated with precipitation and 
air temperature ranges. For example, a DRRE would 
be expected if 1-day precipitation exceeds 2 cm and/or 
if 2-day precipitation exceeds about 3 cm in all but one 
sites. In the two smallest watershed sites with lowest urban 
cover (Glade and Irwin Runs), air temperature variability 
showed relative strong influence, with diel temperature 
ranges exceeding 15 °C leading to a likely DRRE event.

Analyses of DRRE patterns for models with DO quanti-
fied as concentration versus saturation were largely congru-
ent. In all sites except Glade Run, DRRE events for DO 
concentration and saturation co-occurred ≥ 50% of the time 
(Supplementary Table S1). Consequently, models using DO 
saturation to quantify DRRE largely mirrored those gener-
ated from DO concentration (Supplementary Figures S1 and 
S2).

Recovery of diel DO ranges to pre-DRRE levels varied 
significantly among sites (F5,150 = 2.9, p = 0.0161, Fig. 8a) 
and increased along a temperature gradient (F1,150 = 7.8, 
p = 0.0060, Fig. 8b). Recovery times decreased consistently 
along a watershed size gradient, with 50% pre-DRRE diel 
ranges reached after a mean of 4.5 days in the smallest site 
(Breakneck Creek) and means of 2.1 in the two largest sites: 

Montour and Nine Mile Runs. Warmer water temperatures 
tended to result in longer recovery times (GLM coefficient 
for water temperature ± 1 standard error, °C = 0.103 ± 0.026).

Photosynthetic activity likely contributed significantly 
to diel DO ranges in all sites, including the smallest sites 
with closed canopies. DO diel ranges on dates where mean 
water temperatures exceeded 10 °C significantly declined 
as a function of mean diel cloud cover in all sites (Fig. 9) 
though the variance accounted for differed among sites, with 
R2 values in linear models ranging from 0.01 (Nine Mile 
Run) to 0.14 (Glade Run).

The assessment of hydrologic events in Little Pine Creek 
from 2016 to 2018 suggested that the thresholds of precipi-
tation identified in BRT models correspond to significantly 
elevated discharge. Discharge records included 176 high 
flow events over the period monitored with a mean (± 1 
standard error) duration of 0.58 ± 0.06 days. Changepoint 
analyses detected a threshold of 1.0 cm (95% confidence 
range 0.1–2.8 cm) over a 1-day period as enough precipita-
tion to elevate maximum flood discharge and a threshold 
of 0.4 cm (95% confidence range 0.1–3.9 cm) over a 2-day 
period (Fig. 10). Such thresholds correspond to those indi-
cated by BRT models of DRRE occurrence that reported 

Fig. 3   Patterns in dissolved oxygen (DO) in each site over the course 
of the study period. The dark line represents the daily average and 
gray bands illustrate diel ranges. Filled circles above the x-axis repre-

sent dates in which DO saturation exceeded 100%. Gaps in the record 
reflect instances when sensors failed, or data were deemed unreliable
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1- and 2-day precipitation totals as important factors (com-
pare thresholds in Fig. 10 to partial dependencies in Fig. 7).

Discussion

Most of our knowledge regarding dissolved oxygen patterns 
has been from stream metabolism studies in forested and 
agricultural watersheds (Young and Huryn 1999; Mulhol-
land et al. 2001; Gücker et al. 2009), but there has been 
growing work analyzing DO oscillations in urban streams 
(Bernot et al. 2010, Pennino et al. 2014, Leford et al. 2017). 
Our findings suggest that precipitation events may signifi-
cantly diminish the amplitude of diel DO oscillations asso-
ciated with respiration and photosynthesis in both forested 
and urban streams. Although our watershed sample size pre-
cludes the ability to directly test the role of watershed size 
and urbanization, patterns in our data suggest that as streams 

expand in size, the likelihood of diel maxima occurring dur-
ing daylight hours escalates (Mejia et al. 2018); this likely 
reflects greater shifts between respiration and primary pro-
ductivity in larger systems with more periphyton (Bott et al. 
1985; Kaushal et al. 2014a, b; Hotchkiss et al. 2015). More 
urbanized streams tend to exhibit greater diel DO ranges, 
potentially due to increased respiration and primary pro-
duction driven by eutrophication, as higher levels of labile 
organic matter in urban streams can support microbial respi-
ration (e.g., He et al. 2011, Klose et al. 2012, Miskewitz and 
Uchrin 2013, Kaushal et al. 2014a, b, Smith and Kaushal 
2015). Among all sites, levels of precipitation capable of ele-
vating discharge typically reduce the magnitude of diel DO 
oscillations. Such events may occur as floods disrupt respi-
ration and especially primary production (Uehlinger 2000; 
Roberts et al. 2007; Reisinger et al. 2019) and/or because 
floods alter reaeration of DO at the surface (Wilcock 1988).

Precipitation events influence diel DO variations

The behavior of DO concentrations in our stream sites sug-
gests that thresholds of precipitation are capable of rou-
tinely resetting diel DO variations. High 1- and/or 2-day 
precipitation events, which likely corresponded to elevated 
discharge, were significantly associated with DO DRREs 
in each site as diel DO ranges were consistently found to 
be depressed for multiple days following these events. One 
potential mechanism for such patterns is that elevated dis-
charge increases scouring and reduces microbial biomass, 
thereby lowering the magnitude of DO ranges in subsequent 
days (Uehlinger 2000, Reisinger et al. 2018, Blaszczak et al. 
2019). Other studies have found that primary productivity 
can be greatly reduced during precipitation events if elevated 
flows increase turbidity (Young and Huryn 1996; Griffiths 
et al. 2013) or decrease respiration rates by flushing organic 
matter (Acuña et al. 2004, 2007). However, precipitation 
events and increased stream discharge have also been shown 
to mobilize sediments and reduce primary productivity rates 
by displacing periphyton (O’Connor et al. 2012; Blaszczak 
et al. 2019).

Precipitation events and periods of elevated discharge 
could also alter reaeration, further complicating the 
interacting processes that structure diel DO dynamics in 
streams. Increased water velocity and turbulence, both of 
which increase during flood periods, typically enhance 
reaeration (Thyssen and Erlansen 1987; Raymond et al. 
2012; Haider et al. 2013). However, relationships between 
DO reaeration coefficients and discharge can be highly 
site-specific (Aristegi et al. 2009; Demars et al. 2015) or 
altogether absent (Melching and Flores 1999). Both posi-
tive and negative relationships between reaeration coef-
ficients and flow rates have been observed even within 
networks of streams with similar watershed characteristics 

Fig. 4   Mean diel dissolved oxygen (DO) ranges among the six study 
sites. Values illustrate mean (± 1 standard deviations) diel ranges of a 
DO concentrations and b DO saturation. Sites are ordered by water-
shed size
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(Izagirre et al. 2007; Aristegi et al. 2009). While elevated 
turbulence would increase reaeration during high flow 
events, such an effect could be counteracted by decreasing 
reach travel time (Wallin et al. 2011). Therefore, identify-
ing the role of reaeration in shaping DO oscillations under 

different discharge levels may require direct measurement 
of the process.

We cannot directly compare the relative importance of 
altered reaeration rates versus disruptions to metabolic 
rates in shaping DRREs using our findings because we did 

Fig. 5   Proportional summaries 
of diel dissolved oxygen (DO) 
minima and maxima with 
respect to whether each metric 
occurred during daylight or 
nighttime hours. The propor-
tions reflect the entire record 
of each study site. Sites are 
ordered by watershed size

Table 2   Boosted regression tree model performance and predictor variable relative influence values for models predicting diel range reset event 
(DRRE) occurrence

Models included only predictor variables that exceeded 5% relative influence in initial models. Variables deemed highly influential (exceeding 
20% of relative influence) are highlighted in bold and their partial dependency plots are illustrated in Fig. 6

Breakneck 
Creek

Glade Run Irwin Run Crouse Run Montour Run Nine Mile Run

Model performance
 Deviance explained 0.29 0.23 0.3 0.38 0.33 0.38
 CV correlation 0.48 0.63 0.52 0.57 0.55 0.47

Relative influence (%)
 1-day precipitation – 4.4 28.7 42.9 45.3 38.6
 2-day precipitation 48.7 17.8 8.9 22.4 – –
 5-day precipitation 11.3 9.1 – – 16.3 –
 10-day precipitation – 9.4 18.7 – 13.8 –
 1-day air temperature range – 30.3 31.2 – – –
 2-day air temperature range – 15.5 – – – –
 2-day DO concentration – – – – – –
 5-day DO concentration 30.5 – – – – –
 10-day DO concentration 9.6 – – – 9.2 26.2
 2-day water temperature – 13.5 – – – 23.9
 5-day water temperature – – – – – –
 10-day water temperature – – 12.5 24.6 9.5 –

Season – – – 10 – –
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not measure reaeration or biofilm density. However, sev-
eral attributes of our results suggest that biofilm slough-
ing may have been relatively more important. The median 
duration of flood periods in Little Pine Creek, defined as 
discharge exceeding three times the monthly median flow, 
was 0.24  days while median DRRE recovery periods 
(defined as the amount of time transpired before DO diel 
ranges reached 50% of their pre-DRRE state) were ~ 2 days 
or more in most sites. Furthermore, DRRE recovery times 
were longest (~ 4 days) in our smallest site, where channel 
slope was steepest and flood discharge periods following a 
precipitation event would have been shortest. Moderate flood 
events have proven to be capable of causing mass periphyton 
sloughing events (Biggs et al. 1989; Biggs et al. 1999) that 
are capable of causing disruptions to metabolic processes 
during post-flood periods (Reisinger et al. 2018, Blaszczak 
et al. 2019; Uehlinger 2000). Nevertheless, we cannot rule 
out flood-driven changes to reaeration rates as the mecha-
nistic cause behind DRRE events and the two mechanisms 
we outline above are not mutually exclusive.

Though our findings focus on the amplitudes of diel DO 
oscillations and not metabolic rates, the consistent associa-
tion of DRREs with precipitation events in all sites suggests 
that discharge pulses are consistently capable of disrupt-
ing biological activity and/or reaeration across a range of 
watershed settings. We propose that streams exhibit different 
thresholds of discharge influenced by air temperatures and 
seasonality that, if exceeded, cause whole-ecosystem reduc-
tions in biological activity that can persist for days following 
the event based on watershed size and urbanization. Diel 
DO ranges in our network streams appear to consistently 
respond, if 1-day precipitation exceeds ~ 2 cm and/or if 2-day 
precipitation exceeds ~ 2.5 cm (Fig. 7). Such thresholds are 

likely to prove system-specific due to the hydrologic tem-
plate and periphyton community present, as periphyton 
species possess differential resistance to high flow events 
(Graba et al. 2013; Tornés and Sabater 2010). Nonethe-
less, identifying these thresholds is important because diel 
variations of DO can be linked to changes in redox poten-
tials, mobilization and transformation of chemical cocktails 
in urban streams during hydrologic events (Kaushal et al. 
2018), and can be indicative of abrupt declines in whole 
stream nitrogen uptake functions (Reisinger et al. 2019).

Comparison of DO concentrations and oscillations 
in urban versus forested watersheds

Our findings also illustrate how controls on DO con-
centrations in urban streams differ from those in less 
impacted watersheds. Although urban streams exhibit a 
tendency to frequently lose periphyton biomass due to 
flood-driven scour (e.g., Murdock et al. 2004; He et al. 
2011; Smith and Kaushal 2015; Reisinger et al. 2017), 
observed thresholds of precipitation that led to DRREs 
did not appear to be substantially lower in our urbanized 
sites. Our most urbanized site, Nine Mile Run, does flood 
in response to lower precipitation thresholds relative to 
nearby streams with watersheds lacking urban land cover 
(Bain et al. 2014) and would therefore be presumed to 
exhibit DRREs with lower precipitation. Consequently, 
periphyton communities in urban streams may shift such 
that metabolic processes may become more resilient to 
flood events (Reisinger et al. 2017). Furthermore, DO 
regimes in urban streams can greatly vary among geo-
morphic settings, from consistently near-hypoxic to near-
saturation and may be particularly sensitive to channel 

Fig. 6   Relative influences of 
variable types on dissolved 
oxygen (DO) diel range reset 
event (DRRE) probability in 
boosted regression tree models 
for each site
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slope (Blaszczak et al. 2019). Diel DO ranges in our most 
urbanized site, Nine Mile Run, were found to recover 
faster than all other sites, suggesting that the periphyton 

community possesses resistance to flood events or recov-
ers faster due to elevated nutrient concentrations deliv-
ered by combined sewerage overflows.

Fig. 7   Site-specific partial dependency plots of variables with high 
relative influence on diel DO range reset events. Lines represent the 
marginal effect of each site/parameter combination on the likelihood 

of a diel range reset event (DRRE) occurring, with larger values 
indicating higher relative likelihood (see Elith and Leathwick 2017). 
Only variables with ≥ 20% relative influence are shown
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In our larger and urban sites, Nine Mile and Crouse 
Runs, DRREs were unexpectedly more associated with 
cooler temperatures and/or when antecedent mean ambient 
DO concentrations were relatively high. Warmer tempera-
tures typically elevate periphyton productivity, resulting in 
greater diel DO ranges particularly in urbanized streams 
(Wassenaar et al. 2010; Klose et al. 2012), which would 
suggest that conditions inherent during summer would 
more likely lead to DRREs. However, because our data 
are limited to six sites, such concepts remain speculative.

Other potential factors that can influence stream 
DO oscillations

Other findings from this effort need to be considered in the 
context of the study limitations. Continuous data on addi-
tional parameters, such as photosynthetically active radiation 
(PAR), precise field-derived estimates of channel slopes, 
reaeration coefficients, and salinity and discharge measure-
ments would have enabled the capacity for far greater inquiry 
related to hydrologic metrics and metabolic processes than 
we were able to conduct with a single DO sensor per site 
(Grace et al. 2015). Because our initial intent was to quantify 
the frequency and intensity of low DO concentration events 
in urbanizing streams, we opted to broaden the spatial scale 
and number of sites for our study at the expense of more 
intensive monitoring at a single site. Emerging networks of 
open-access integrated sensor networks coupled with routine 
biological surveys, such as those maintained by the National 
Ecological Observatory Network (NEON; Goodman et al. 
2015) and the Australian Supersite/TERN network (Karan 
et al. 2016), will increase the ability to investigate relation-
ships among dynamic environmental attributes in streams 
to test hypotheses related to our results. Additionally, open-
access data from networks designed to characterize stream 
metabolic signatures (StreamPULSE; Bernhardt et al. 2018) 
and a key metanalysis with a similar objective (Appling et al. 
2018) further enhance the ability to conduct such inquir-
ies. The temporal coverage of our data were incomplete due 
to events that disrupted sensor performance, particularly in 
Nine Mile Run, which limited the extent to which we could 
quantify patterns related to seasonality. Most studies deploy-
ing in situ sensors in streams confront this challenge, espe-
cially in urban systems where flood frequencies are elevated. 
Despite our data gaps, we were able to assess data from 
all seasons in each site. Furthermore, the disjoint temporal 
extents among sites may ensure that the relationships we 
report do not idiosyncratically reflect our study period.

Implications and conclusion

Our work highlights the importance of accounting for water-
shed context when considering the factors regulating DO 
oscillations. Streams draining very small watersheds may 
not always exhibit the typical diel patterns in DO cycling 
driven by biological processes, particularly when atmos-
pheric temperatures shift rapidly in a short period. Addi-
tionally, moderate to high precipitation events appear to be 
capable of disrupting the extent to which biological pro-
cesses and/or reaeration control DO. Climate change models 
forecast greater variability in temperature fluctuations and/
or extremes (Horton et al. 2015) and more frequent mod-
erate to severe flood events (Ban et al. 2015, Mallakpour 

Fig. 8   a Time elapsed d until the recovery of diel dissolved oxygen 
(DO) range following a diel range reset event (DRRE) reached 50% 
of the diel DO range observed during the day prior to the corre-
sponding DRRE. Filled points represent medians and open points are 
observations with sizes scaled by the count of observations. b Recov-
ery of diel DO ranges following a DRRE along a temperature gra-
dient. Temperatures on the x-axis correspond to the mean observed 
water temperature during the recovery period
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and Villarini 2015) in many regions with climates like those 
from our study area. There has been increased variability in 
streamflow in the Mid-Atlantic U.S. over the past century 
(Kaushal et al. 2014a, b) and warming stream and river tem-
peratures (Kaushal et al. 2010). Such long-term changes to 
climate attributes suggest that the nature of DO regimes in 
streams may also be evolving, with potential consequences 
for critical processes related to the parameter such as nutri-
ent cycling and greenhouse gas fluxes (Harrison et al. 2005; 
Rosamond et al. 2012).
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